74 research outputs found

    Self-Learning Hot Data Prediction: Where Echo State Network Meets NAND Flash Memories

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Well understanding the access behavior of hot data is significant for NAND flash memory due to its crucial impact on the efficiency of garbage collection (GC) and wear leveling (WL), which respectively dominate the performance and life span of SSD. Generally, both GC and WL rely greatly on the recognition accuracy of hot data identification (HDI). However, in this paper, the first time we propose a novel concept of hot data prediction (HDP), where the conventional HDI becomes unnecessary. First, we develop a hybrid optimized echo state network (HOESN), where sufficiently unbiased and continuously shrunk output weights are learnt by a sparse regression based on L2 and L1/2 regularization. Second, quantum-behaved particle swarm optimization (QPSO) is employed to compute reservoir parameters (i.e., global scaling factor, reservoir size, scaling coefficient and sparsity degree) for further improving prediction accuracy and reliability. Third, in the test on a chaotic benchmark (Rossler), the HOESN performs better than those of six recent state-of-the-art methods. Finally, simulation results about six typical metrics tested on five real disk workloads and on-chip experiment outcomes verified from an actual SSD prototype indicate that our HOESN-based HDP can reliably promote the access performance and endurance of NAND flash memories.Peer reviewe

    Draft Genome Sequence of a Potential Nitrate-Dependent Fe(II)-Oxidizing Bacterium, Aquabacterium parvum B6

    Get PDF
    Aquabacterium parvum B6 is a potential nitrate-dependent Fe(II)-oxidizing bacterium. The genes related to its denitrifying mechanism and iron metabolisms were unknown. We present the draft genome of Aquabacterium parvum B6, which could provide further insight into the nitrate-dependent Fe(II)-oxidizing mechanism of strain B6

    Surface Defect Classification for Hot-Rolled Steel Strips by Selectively Dominant Local Binary Patterns

    Get PDF
    Developments in defect descriptors and computer vision-based algorithms for automatic optical inspection (AOI) allows for further development in image-based measurements. Defect classification is a vital part of an optical-imaging-based surface quality measuring instrument. The high-speed production rhythm of hot continuous rolling requires an ultra-rapid response to every component as well as algorithms in AOI instrument. In this paper, a simple, fast, yet robust texture descriptor, namely selectively dominant local binary patterns (SDLBPs), is proposed for defect classification. First, an intelligent searching algorithm with a quantitative thresholding mechanism is built to excavate the dominant non-uniform patterns (DNUPs). Second, two convertible schemes of pattern code mapping are developed for binary encoding of all uniform patterns and DNUPs. Third, feature extraction is carried out under SDLBP framework. Finally, an adaptive region weighting method is built for further strengthening the original nearest neighbor classifier in the feature matching stage. The extensive experiments carried out on an open texture database (Outex) and an actual surface defect database (Dragon) indicates that our proposed SDLBP yields promising performance on both classification accuracy and time efficiencyPeer reviewe

    Design of gate-tunable graphene electro-optical reflectors based on an optical slot-antenna coupled cavity

    Get PDF
    The unique properties of graphene offer an exciting opportunity towards tunable photonic surfaces for flexible devices. In this paper, we design a gate-tunable, free-space graphene electro-optical reflector based on cavity resonator structures. We firstly calculate the graphene refractive index n and k as a function of Fermi level and external gating voltage. Then, we designed the structure of the single-layer graphene reflective resonator by carefully selecting suitable materials and device parameters to maximize the reflectance differences before and after electro-optical tuning. We also developed a theoretical model to discuss this system based on the optical transition matrix method. Moreover, we used field enhancement to further increase the reflectance differences by incorporating Sn nanodots based optical slot-antenna coupled cavities. The maximum broadband, incident angle insensitive reflectance differences could reach 28% with an extinction ratio of 1.62 dB at a low insertion loss of 0.45 dB, and the spectral range is tunable by changing the optical cavity length. We also used an indium tin oxide layer as part of the optical cavity and the electrode simultaneously to reduce the voltage applied. To our best knowledge, this work is the first one on tunable two-dimensional (2D) material reflectors for free-space applications, apart from using liquid crystals or magnetic metasurfaces. This new design of tunable 2D electro-optical reflectors also reduces the complexity of fabrication steps, having promising applications in tunable flexible photonic surfaces and devices for variable optical attenuators and light detection and ranging systems

    Effects of airflow on the acoustic attenuation performance of reactive muffler

    Get PDF
    In order to study the effect of airflow on the acoustic attenuation performance of reactive muffler, firstly, the formulas of wavenumber, transfer matrix method and three point method were deduced in the case of uniform flow. Then, the differences between transfer matrix method and three point method were compared based on the results of finite element method (FEM), for the no-flow, uniform flow and non-uniform flow three different cases. The results showed that both the transfer matrix method and three point method can accurately calculate the transmission loss (TL) of muffler under no-flow and uniform flow conditions. But, for the non-uniform flow case, both the results calculated by the two methods above have deviations on account of the complexity of flow field and the limitations of calculation methods. In addition, negative values even appear in the low frequency range. Finally, comparative study about the effect of uniform flow and non-uniform flow on the acoustic attenuation performance of muffler was made. Results showed that the difference of the effect of uniform flow and non-uniform flow on the acoustic attenuation performances is little when the airflow regenerated noise is ignored and the existence of airflow has little effect on the acoustic attenuation performance of reactive muffler. Therefore, the effect of airflow on the acoustic attenuation performance can be neglected during the initial phase of muffler design

    Surgical Models of Gastroesophageal Reflux with Mice

    Get PDF
    Multiple surgical procedures have been reported to induce gastroesophageal reflux in animals. Herein, we report three surgical models with mice aiming to induce reflux of gastric contents, duodenal contents or mixed contents. Surgical procedures and general principles have been described in detail. A researcher with surgical experience should be able to grasp the technique after a short period of practice. After surgery, most mice can survive and develop reflux esophagitis similar to that in humans. However, it should be noted that histological differences between mouse and human esophagus are the inherent limitations of these surgical models. If used for research on Barrett’s esophagus and adenocarcinoma, these procedures may need to be combined with genetic modifications

    Effects of airflow on the acoustic attenuation performance of reactive muffler

    Get PDF
    In order to study the effect of airflow on the acoustic attenuation performance of reactive muffler, firstly, the formulas of wavenumber, transfer matrix method and three point method were deduced in the case of uniform flow. Then, the differences between transfer matrix method and three point method were compared based on the results of finite element method (FEM), for the no-flow, uniform flow and non-uniform flow three different cases. The results showed that both the transfer matrix method and three point method can accurately calculate the transmission loss (TL) of muffler under no-flow and uniform flow conditions. But, for the non-uniform flow case, both the results calculated by the two methods above have deviations on account of the complexity of flow field and the limitations of calculation methods. In addition, negative values even appear in the low frequency range. Finally, comparative study about the effect of uniform flow and non-uniform flow on the acoustic attenuation performance of muffler was made. Results showed that the difference of the effect of uniform flow and non-uniform flow on the acoustic attenuation performances is little when the airflow regenerated noise is ignored and the existence of airflow has little effect on the acoustic attenuation performance of reactive muffler. Therefore, the effect of airflow on the acoustic attenuation performance can be neglected during the initial phase of muffler design

    Effects of airflow on the acoustic attenuation performance of reactive muffler

    Get PDF
    In order to study the effect of airflow on the acoustic attenuation performance of reactive muffler, firstly, the formulas of wavenumber, transfer matrix method and three point method were deduced in the case of uniform flow. Then, the differences between transfer matrix method and three point method were compared based on the results of finite element method (FEM), for the no-flow, uniform flow and non-uniform flow three different cases. The results showed that both the transfer matrix method and three point method can accurately calculate the transmission loss (TL) of muffler under no-flow and uniform flow conditions. But, for the non-uniform flow case, both the results calculated by the two methods above have deviations on account of the complexity of flow field and the limitations of calculation methods. In addition, negative values even appear in the low frequency range. Finally, comparative study about the effect of uniform flow and non-uniform flow on the acoustic attenuation performance of muffler was made. Results showed that the difference of the effect of uniform flow and non-uniform flow on the acoustic attenuation performances is little when the airflow regenerated noise is ignored and the existence of airflow has little effect on the acoustic attenuation performance of reactive muffler. Therefore, the effect of airflow on the acoustic attenuation performance can be neglected during the initial phase of muffler design

    Molecular Mechanisms of Barrett’s Esophagus

    Get PDF
    Barrett’s esophagus (BE) is defined as metaplastic conversion of esophageal squamous epithelium to intestinalized columnar epithelium. As a premalignant lesion of esophageal adenocarcinoma (EAC), it develops as a result of chronic gastroesophageal reflux disease (GERD). Many studies have been conducted to undertand the molecular mechanism of this disease. This review summarizes recent results of involving squamous transcription factors, intestinal transcription factors, signaling pathways, stromal factors, microRNAs, and other factors in the development of BE. A conceptual framework is proposed to guide future studies. We expect elucidation of the molecular mechanism of BE will help us develop proper management of GERD, BE, and EAC

    Synthesis of BiOI-TiO 2

    Get PDF
    This study was conducted to synthesize a series of nanosized BiOI-TiO2 catalysts to photodegrade Bisphenol A solution. The BiOI-TiO2 nanoparticles were synthesized in the reverse microemulsions, consisting of cyclohexane, Triton X-100, n-hexanol, and aqueous salt solutions. The synthesized particles were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface analyzer, Fourier transform-infrared spectroscopy (FT-IR), ultraviolet-visible light (UV-Vis) absorption spectra and transmission electron microscope (TEM). The photodegradation of Bisphenol A (BPA) in aqueous suspension under visible light irradiation was investigated to explore the feasibility of using the photocatalytic method to treat BPA wastewater. The effects of different molar ratios of BiOI to TiO2 on the photocatalytic activity were discussed. The experimental results revealed that the photocatalytic effect of the BiOI-TiO2 particles was superior to the commercial P25 TiO2. The BPA degradation could be approached by a pseudo-first-order rate expression. The observed reaction rate constant (kobs) was related to nanoparticles dosage and initial solution pH
    • …
    corecore